
Software ENGINEERING

UNIT-I

Introduction to Software Engineering and A Generic view of Process

 Software Engineering is the process of designing, developing, testing, and maintaining software. It is a systematic and
disciplined approach to software development that aims to create high-quality, reliable, and maintainable software.

 Software is a program or set of programs containing instructions that provide the desired functionality. Engineering is the process
of designing and building something that serves a particular purpose and finds a cost-effective solution to problems.

 What is Software Engineering?

 Software Engineering is the process of designing, developing, testing, and maintaining software. It is a systematic and disciplined
approach to software development that aims to create high-quality, reliable, and maintainable software.

 Software engineering includes a variety of techniques, tools, and methodologies, including requirements analysis, design, testing,
and maintenance.

 It is a rapidly evolving field, and new tools and technologies are constantly being developed to improve the software development
process.

 By following the principles of software engineering and using the appropriate tools and methodologies, software developers can
create high-quality, reliable, and maintainable software that meets the needs of its users.

 Software Engineering is mainly used for large projects based on software systems rather than single programs or applications.

 The main goal of Software Engineering is to develop software applications for improving quality, budget, and time efficiency.

 Software Engineering ensures that the software that has to be built should be consistent, correct, also on budget, on time, and
within the required requirements.

THE EVOLVING ROLE OF SOFTWARE :
 Software Evolution is a term that refers to the process of developing software initially, and then timely

updating it for various reasons, i.e., to add new features or to remove obsolete functionalities, etc. This

article focuses on discussing Software Evolution in detail.

 What is Software Evolution?

 The software evolution process includes fundamental activities of change analysis, release planning, system

implementation, and releasing a system to customers.

 The cost and impact of these changes are accessed to see how much the system is affected by the change and

how much it might cost to implement the change.

 If the proposed changes are accepted, a new release of the software system is planned.

 During release planning, all the proposed changes (fault repair, adaptation, and new functionality) are

considered.

 A design is then made on which changes to implement in the next version of the system.

 The process of change implementation is an iteration of the development process where the revisions to the

system are designed, implemented, and tested.

 Necessity of Software Evolution

 Software evaluation is necessary just because of the following reasons:

 Change in requirement with time: With time, the organization’s needs and modus Operandi of working could
substantially be changed so in this frequently changing time the tools(software) that they are using need to
change to maximize the performance.

 Environment change: As the working environment changes the things(tools) that enable us to work in that
environment also changes proportionally same happens in the software world as the working environment
changes then, the organizations require reintroduction of old software with updated features and
functionality to adapt the new environment.

 Errors and bugs: As the age of the deployed software within an organization increases their preciseness or
impeccability decrease and the efficiency to bear the increasing complexity workload also continually
degrades. So, in that case, it becomes necessary to avoid use of obsolete and aged software. All such obsolete
Pieces of software need to undergo the evolution process in order to become robust as per the workload
complexity of the current environment.

 Security risks: Using outdated software within an organization may lead you to at the verge of various
software-based cyberattacks and could expose your confidential data illegally associated with the software
that is in use. So, it becomes necessary to avoid such security breaches through regular assessment of the
security patches/modules are used within the software. If the software isn’t robust enough to bear the
current occurring Cyber attacks so it must be changed (updated).

 For having new functionality and features: In order to increase the performance and fast data processing
and other functionalities, an organization need to continuously evolute the software throughout its life cycle
so that stakeholders & clients of the product could work efficiently.

Changing Nature of Software :
 The software is an instruction or computer program that when executed provides desired features, function, and performance. A

data structure that enables the program to adequately manipulate information and documents that describe the operation and use
of the program.

 Characteristics of software:

 There is some characteristic of software which is given below:

 Reliability: The ability of the software to consistently perform its intended tasks without unexpected failures or errors.

 Usability: How easily and effectively users can interact with and navigate through the software.

 Efficiency: The optimal utilization of system resources to perform tasks on time.

 Maintainability: How easily and cost-effectively software can be modified, updated, or extended.

 Portability: The ability of software to run on different platforms or environments without requiring significant modifications.

 Changing Nature of Software:

 Nowadays, seven broad categories of computer software present continuing challenges for software engineers. Which is given below:

 System Software: System software is a collection of programs that are written to service other programs. Some system software
processes complex but determinate, information structures. Other system application processes largely indeterminate data.
Sometimes when, the system software area is characterized by the heavy interaction with computer hardware that requires
scheduling, resource sharing, and sophisticated process management.

 Application Software: Application software is defined as programs that solve a specific business need. Application in this area
processes business or technical data in a way that facilitates business operation or management technical decision-making. In
addition to conventional data processing applications, application software is used to control business functions in real-time.

 Engineering and Scientific Software: This software is used to facilitate the engineering function and task.

however modern applications within the engineering and scientific area are moving away from conventional

numerical algorithms. Computer-aided design, system simulation, and other interactive applications have begun

to take a real-time and even system software characteristic.

 Embedded Software: Embedded software resides within the system or product and is used to implement and

control features and functions for the end-user and for the system itself. Embedded software can perform

limited and esoteric functions or provide significant function and control capability.

 Product-line Software: Designed to provide a specific capability for use by many customers, product-line

software can focus on the limited and esoteric marketplace or address the mass consumer market.

 Web Application: It is a client-server computer program that the client runs on the web browser. In their

simplest form, Web apps can be little more than a set of linked hypertext files that present information using

text and limited graphics. However, as e-commerce and B2B applications grow in importance. Web apps are

evolving into a sophisticated computing environment that not only provides a standalone feature, computing

function, and content to the end user.

 Artificial Intelligence Software: Artificial intelligence software makes use of a nonnumerical algorithm to solve

a complex problem that is not amenable to computation or straightforward analysis. Applications within this

area include robotics, expert systems, pattern recognition, artificial neural networks, theorem proving, and

game playing.

What is Legacy Software?

 Software is the product with the set of instructions, programs used to

operate the computer and to perform the specific tasks. The programs

will execute within a computer of any size and architecture.Software is a

program or set of programs containing instructions that provide desired

functionality. And Engineering is the process of designing and building

something that serves a particular purpose and finds a cost-effective

solution to problems.

Legacy Software
 The older programs which are developed decades ago that are still in use by performing modifications in order to

meet the business requirements. The rapid increase of such systems may cause the risk to the larger
organizations as they may require outdated hardware and operating system.

 Many legacy systems remain supportive to core business functions and are important to business. Hence, legacy
software is characterized by longevity and business criticality.

 Sometimes the additional characteristic that is present in legacy software is poor quality. Legacy systems some
times have inextensible designs, convoluted code, testcases and result that were never archived, a poorly
maintained change history, lack of support and documentation make it difficult to troubleshoot the issues and
leaving the system to security threats and the list can be quite long.

 Just think about the case if we encounter a legacy software that exhibits a poor quality, as it support core business
functions and are important to business, so they should undergo some changes to meet the needs of its users and
run reliably. As time passes they needs to be evolved for the following reasons:

 As the technology is emerging people are looking for the personalized systems especially the working professionals
because the latest software may introduce some required specifications in which the older one is lagging.

 It might not be compatible even if we use speedy modern systems with the older software.

 Software must be re-architected to make it capable of working within a network environment.

 To fix the security issues which are found everyday, we need to change the software.

 Nowadays software is used in every industry like education, industries, healthcare, entertainment, retail,
transportation, so by improving the software every industry will be benefitted.

 The goal of modern software engineering is, building new software systems from

old ones and make them interoperable and cooperate with each other, and also

make them secure and more efficient. Sometimes the legacy software is treated

as necessary but, with a limited capacity and simultaneously they are replaced by

the newer systems.

Software myths :

 Most, experienced experts have seen myths or superstitions (false beliefs or interpretations) or

misleading attitudes (naked users) which creates major problems for management and technical

people. The types of software-related myths are listed below.

(i) Management Myths:

 Myth 1:

 We have all the standards and procedures available for software development.

 Fact:

 Software experts do not know all the requirements for the software development.

 And all existing processes are incomplete as new software development is based on new and

different problem.

 Myth 2:

 The addition of the latest hardware programs will improve the software development.

 Fact:

 The role of the latest hardware is not very high on standard software development; instead (CASE) Engineering

tools help the computer, they are more important than hardware to produce quality and productivity.

 Hence, the hardware resources are misused.

 Myth 3:

 With the addition of more people and program planners to Software development can help meet project

deadlines (If lagging behind).

 Fact:

 If software is late, adding more people will merely make the problem worse. This is because the people already

working on the project now need to spend time educating the newcomers, and are thus taken away from their

work. The newcomers are also far less productive than the existing software engineers, and so the work put

into training them to work on the software does not immediately meet with an appropriate reduction in work.

 (ii)Customer Myths:

 The customer can be the direct users of the software, the technical team, marketing / sales department, or

other company. Customer has myths leading to false expectations (customer) & that’s why you create

dissatisfaction with the developer.

 Myth 1:

 A general statement of intent is enough to start writing plans (software development) and details of objectives

can be done over time.

 Fact:

 Official and detailed description of the database function, ethical performance, communication, structural

issues and the verification process are important.

 Unambiguous requirements (usually derived iteratively) are developed only through effective and continuous

communication between customer and developer.

 Myth 2:

 Software requirements continually change, but change can be easily accommodated because software is flexible

 Fact:

 It is true that software requirements change, but the impact of change varies with the time at which it is introduced. When

requirements changes are requested early (before design or code has been started), the cost impact is relatively small.

However, as time passes, the cost impact grows rapidly—resources have been committed, a design framework has been

established, and change can cause upheaval that requires additional resources and major design modification.

 (iii)Practitioner’s Myths:

 Myths 1:

 They believe that their work has been completed with the writing of the plan.

 Fact:

 It is true that every 60-80% effort goes into the maintenance phase (as of the latter software release). Efforts

are required, where the product is available first delivered to customers.

 Myths 2:

 There is no other way to achieve system quality, until it is “running”.

 Fact:

 Systematic review of project technology is the quality of effective software verification method. These updates

are quality filters and more accessible than test.

 Myth 3:

 An operating system is the only product that can be successfully exported project.

 Fact:

 A working system is not enough, the right document brochures and booklets are also required to provide

guidance & software support.

 Myth 4:

 Engineering software will enable us to build powerful and unnecessary document & always delay us.

 Fact:

 Software engineering is not about creating documents. It is about creating a quality product. Better quality

leads to reduced rework. And reduced rework results in faster delivery times

Layered Technology in Software

Engineering :

 Software engineering is a fully layered technology, to develop software we need to go from one layer to

another. All the layers are connected and each layer demands the fulfillment of the previous layer.

Fig: The diagram shows the layers of software development

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

Layered technology is divided into four parts:

 1. A quality focus: It defines the continuous process improvement principles of software. It
provides integrity that means providing security to the software so that data can be accessed by
only an authorized person, no outsider can access the data. It also focuses on maintainability
and usability.

 2. Process: It is the foundation or base layer of software engineering. It is key that binds all the
layers together which enables the development of software before the deadline or on
time. Process defines a framework that must be established for the effective delivery of
software engineering technology. The software process covers all the activities, actions, and
tasks required to be carried out for software development.

 Process activities are listed below:-

 Communication: It is the first and foremost thing for the development of software. Communication is

necessary to know the actual demand of the client.

 Planning: It basically means drawing a map for reduced the complication of development.

 Modeling: In this process, a model is created according to the client for better understanding.

 Construction: It includes the coding and testing of the problem.

 Deployment:- It includes the delivery of software to the client for evaluation and feedback.

 3. Method: During the process of software development the answers to all “how-to-do” questions are given

by method. It has the information of all the tasks which includes communication, requirement analysis,

design modeling, program construction, testing, and support.

 4. Tools: Software engineering tools provide a self-operating system for processes and methods. Tools are

integrated which means information created by one tool can be used by another.

Software Process Framework :
 A Software Process Framework is a structured approach that defines the steps, tasks, and activities involved in

software development. This framework serves as a foundation for software engineering, guiding the

development team through various stages to ensure a systematic and efficient process. A Software Process

Framework helps in project planning, risk management, and quality assurance by detailing the chronological

order of actions.

 It includes task sets, umbrella activities, and process framework activities, all essential for a successful

software development lifecycle. Utilizing a well-defined Software Process Framework enhances productivity,

consistency, and the overall quality of the software product.

 What is a Software Process Framework?

 Software Process Framework details the steps and chronological order of a process. Since it serves as a

foundation for them, it is utilized in most applications. Task sets, umbrella activities, and process framework

activities all define the characteristics of the software development process. Software Process includes:

 Tasks: They focus on a small, specific objective.

 Action: It is a set of tasks that produce a major work product.

 Activities: Activities are groups of related tasks and actions for a major objective.

https://www.geeksforgeeks.org/software-processes-in-software-engineering/

Software Process Framework :

What Is a Software Development Framework?

 A software development framework is a structured set of tools, libraries, best practices, and guidelines that

help developers build software applications. Think of it as a template or foundation that provides the basic

structure and components needed for a software project.

 Key Points :

 Foundation: It gives a basic structure or template for developing software, so developers don’t have to start

from scratch.

 Components and Tools: It includes pre-built components and tools that make development faster and easier.

 Best Practices and Guidelines: It offers best practices and guidelines to ensure the software is built in an

organized and efficient way.

 Customization: Developers can modify and add new functions to customize the framework to their specific

needs.

https://www.geeksforgeeks.org/5-most-commonly-used-software-development-methodologies/
https://www.geeksforgeeks.org/what-is-application-software/

Advantages of Software Development

Framework :
 A Software Development Framework offers numerous benefits that streamline the software development

process and enhance the quality and efficiency of the final product. Here are some key advantages:

 Increased Productivity: Frameworks provide pre-built components and tools, allowing developers to focus on

specific application logic rather than reinventing the wheel.

 Consistent Quality: By following best practices and standardized processes, frameworks help ensure consistent

code quality and structure across the project.

 Reduced Development Time: With ready-to-use templates and libraries, developers can significantly cut down

on the time needed to build applications from scratch.

 Better Maintainability: A structured framework makes the codebase more organized and easier to understand,

which simplifies maintenance and updates.

 Enhanced Security: Frameworks often include built-in security features and follow industry best practices,

reducing the risk of vulnerabilities.

 Scalability: Frameworks are designed to handle growth, making it easier to scale applications as user demand

increases.

Dis-advantages of Software Development

Framework :
 While Software Development Frameworks offer several advantages, they also come with certain drawbacks

that developers and organizations should consider:

 Learning Curve: Frameworks often have a steep learning curve, requiring developers to invest time and effort

in understanding the framework’s architecture, conventions, and best practices.

 Restrictions: Some frameworks impose constraints and limitations on how developers can design and implement

certain features, potentially limiting flexibility and creativity.

 Complexity Overhead: In some cases, frameworks introduce unnecessary complexity, especially for smaller or

simpler projects, which can lead to over-engineering.

 Performance Overhead: Using a framework may introduce additional layers of abstraction and overhead, which

can impact the performance of the application, particularly in resource-intensive environments.

 Vendor Lock-in: Depending heavily on a specific framework can lead to vendor lock-in, making it challenging to

switch to alternative technologies or frameworks in the future.

Capability Maturity Model Integration (CMMI) :
 The Capability Maturity Model Integration (CMMI) is an advanced framework designed to improve and integrate

processes across various disciplines such as software engineering, systems engineering, and people management.
It builds on the principles of the original CMM, enabling organizations to enhance their processes systematically.
CMMI helps organizations fulfill customer needs, create value for investors, and improve product quality and
market growth. It offers two representations, staged and continuous, to guide organizations in their process
improvement efforts.

 What is Capability Maturity Model Integration (CMMI)?

 Capability Maturity Model Integration (CMMI) is a successor of CMM and is a more evolved model that
incorporates best components of individual disciplines of CMM like Software CMM, Systems Engineering CMM,
People CMM, etc. Since CMM is a reference model of matured practices in a specific discipline, so it becomes
difficult to integrate these disciplines as per the requirements. This is why CMMI is used as it allows the
integration of multiple disciplines as and when needed.

 Objectives of CMMI

 Fulfilling customer needs and expectations.

 Value creation for investors/stockholders.

 Market growth is increased.

 Improved quality of products and services.

 Enhanced reputation in Industry.

https://www.geeksforgeeks.org/software-engineering-capability-maturity-model-cmm/

CMMI Representation – Staged and Continuous :
 A representation allows an organization to pursue a different set of improvement objectives. There are two

representations for CMMI :

 Staged Representation :

 uses a pre-defined set of process areas to define improvement path.

 provides a sequence of improvements, where each part in the sequence serves as a foundation for the next.

 an improved path is defined by maturity level.

 maturity level describes the maturity of processes in organization.

 Staged CMMI representation allows comparison between different organizations for multiple maturity levels.

 Continuous Representation :

 allows selection of specific process areas.

 uses capability levels that measures improvement of an individual process area.

 Continuous CMMI representation allows comparison between different organizations on a process-area-by-process-area
basis.

 allows organizations to select processes which require more improvement.

 In this representation, order of improvement of various processes can be selected which allows the organizations to meet
their objectives and eliminate risks.

https://www.geeksforgeeks.org/different-types-of-risks-in-software-project-development/

CMMI Model – Maturity Levels :
 In CMMI with staged representation, there are five maturity levels described as follows :

 Maturity level 1 : Initial

 processes are poorly managed or controlled.

 unpredictable outcomes of processes involved.

 ad hoc and chaotic approach used.

 No KPAs (Key Process Areas) defined.

 Lowest quality and highest risk.

 Maturity level 2 : Managed

 requirements are managed.

 processes are planned and controlled.

 projects are managed and implemented according to their documented plans.

 This risk involved is lower than Initial level, but still exists.

 Quality is better than Initial level.

 Maturity level 3 : Defined

 processes are well characterized and described using standards, proper procedures, and methods, tools, etc.

 Medium quality and medium risk involved.

 Focus is process standardization.

 Maturity level 4 : Quantitatively managed

 quantitative objectives for process performance and quality are set.

 quantitative objectives are based on customer requirements, organization needs, etc.

 process performance measures are analyzed quantitatively.

 higher quality of processes is achieved.

 lower risk

 Maturity level 5 : Optimizing

 continuous improvement in processes and their performance.

 improvement has to be both incremental and innovative.

 highest quality of processes.

 lowest risk in processes and their performance.

CMMI Model – Capability Levels :

 A capability level includes relevant specific and generic practices for a specific process area that can improve the
organization’s processes associated with that process area. For CMMI models with continuous representation, there are
six capability levels as described below :

 Capability level 0 : Incomplete

 incomplete process – partially or not performed.

 one or more specific goals of process area are not met.

 No generic goals are specified for this level.

 this capability level is same as maturity level 1.

 Capability level 1 : Performed

 process performance may not be stable.

 objectives of quality, cost and schedule may not be met.

 a capability level 1 process is expected to perform all specific and generic practices for this level.

 only a start-step for process improvement.

 Capability level 2 : Managed

 process is planned, monitored and controlled.

 managing the process by ensuring that objectives are achieved.

 objectives are both model and other including cost, quality, schedule.

 Capability level 3 : Defined

 a defined process is managed and meets the organization’s set of guidelines and standards.

 focus is process standardization.

 Capability level 4 : Quantitatively Managed

 process is controlled using statistical and quantitative techniques.

 process performance and quality is understood in statistical terms and metrics.

 quantitative objectives for process quality and performance are established.

 Capability level 5 : Optimizing

 focuses on continually improving process performance.

 performance is improved in both ways – incremental and innovation.

 emphasizes on studying the performance results across the organization to ensure that common causes or issues are

identified and fixed.

 Conclusion

 CMMI provides a structured approach to process improvement, ensuring higher quality and lower risk in

organizational processes. By following the staged or continuous representation, organizations can achieve

different maturity or capability levels, leading to standardized, managed, and optimized processes. This

systematic improvement enhances customer satisfaction, market reputation, and overall business performance.

CMMI is a valuable tool for organizations seeking to integrate and enhance their processes effectively.

Process Assessment :
 Software Process Assessment is a disciplined and organized examination of the software process which is being

used by any organization bases the on the process model. The Software Process Assessment includes many fields

and parts like identification and characterization of current practices, the ability of current practices to control

or avoid significant causes of poor (software) quality, cost, schedule and identifying areas of strengths and

weaknesses of the software.

 Types of Software Assessment :

 Self Assessment : This is conducted internally by the people of their own organisation.

 Second Party assessment: This is conducted by an external team or people of the own organisation are

supervised by an external team.

 Third Party assessment:

 In an ideal case Software Process Assessment should be performed in a transparent, open and collaborative

environment. This is very important for the improvement of the software and the development of the product.

The results of the Software Process Assessment are confidential and are only accessible to the company. The

assessment team must contain at least one person from the organization that is being assessed.

Software Process Cycle:
 Software Process Cycle:

 Generally there are six different steps in the complete cycle:

 Selecting a team: The first step is to select all the team members. Everyone must be software professionals with

sound knowledge in software engineering.

 The standard process maturity questionnaire is filled out by the representatives of the site that will be

evaluated.

 In accordance with the CMM core process areas, the assessment team analyses the questionnaire results to

determine the areas that call for additional investigation.

 The evaluation team visits the location to learn more about the software procedures used there.

 The evaluation team compiles a set of results outlining the organization’s software process’s advantages and

disadvantages.

 In order to deliver the findings to the right audience, the assessment team creates a Key Process Area (KPA)

profile analysis.

SCAMPI;
 SCAMPI stands for Standard CMMI Assessment Method for Process Improvement. To fulfil the demands of the CMMI paradigm, the

Standard CMMI Assessment Method for Process Improvement (SCAMPI) was created (Software Engineering Institute, 2000). Moreover, it
is based on the CBA IPI. The CBA IPI and SCAMPI both have three steps.

 Plan and become ready

 Carry out the evaluation on-site

 Report findings

 The planning and preparation phase includes the following activities:

 Describe the scope of the evaluation.

 Create the assessment strategy.

 Get the evaluation crew ready and trained.

 Make a quick evaluation of the participants.

 CMMI Appraisal Questionnaire distribution

 Look at the survey results.

 Perform a preliminary document evaluation.

 The onsite evaluation phase includes the following activities:

 Display the results.

 Execute the findings.

 Complete / end the assessment.

Difference Between PSP and TSP :

 Software is the set of instructions in the form of programs to govern the computer system and process the

hardware components. To produce a software product a set of activities is used. This set is called a software

process. In this article, we will see a difference between PSP and TSP.

PSP vs TSP

https://www.geeksforgeeks.org/software-processes-in-software-engineering/
https://www.geeksforgeeks.org/software-processes-in-software-engineering/

What is Personal Software Process (PSP) :
 The personal software process (PSP) is focused on individuals to improve their performance. The PSP is an

individual process, and it is a bottom-up approach to software process improvement. The PSP is a prescriptive

process, it is a more mature methodology with a well-defined set of tools and techniques.

 Key Features of Personal Software Process (PSP) :

 Following are the key features of the Personal Software Process (PSP):

 Process-focused: PSP is a process-focused methodology that emphasizes the importance of following a

disciplined approach to software development.

 Personalized: PSP is personalized to an individual’s skill level, experience, and work habits. It recognizes that

individuals have different strengths and weaknesses, and tailors the process to meet their specific needs.

 Metrics-driven: PSP is metrics-driven, meaning that it emphasizes the collection and analysis of data to measure

progress and identify areas for improvement.

 Incremental: PSP is incremental, meaning that it breaks down the development process into smaller, more

manageable pieces that can be completed in a step-by-step fashion.

 Quality-focused: PSP is quality-focused, meaning that it emphasizes the importance of producing high-quality

software that meets user requirements and is free of defects.

Advantages of Personal Software Process (PSP)
 Advantages of Personal Software Process (PSP) are:

 Improved productivity: PSP provides a structured approach to software development that can help individuals

improve their productivity by breaking down the development process into smaller, more manageable steps.

 Improved quality: PSP emphasizes the importance of producing high-quality software that meets user

requirements and is free of defects. By collecting and analyzing data throughout the development process,

individuals can identify and eliminate sources of errors and improve the quality of their work.

 Personalized approach: PSP is tailored to an individual’s skill level, experience, and work habits, which can

help individuals work more efficiently and effectively.

 Improved estimation: PSP emphasizes the importance of accurate estimation, which can help individuals plan

and execute projects more effectively.

 Continuous improvement: PSP promotes a culture of continuous improvement, which can help individuals learn

from past experiences and apply that knowledge to future projects.

Disadvantages of Personal Software Process

(PSP)
 Following are the Disadvantages of Personal Software Process (PSP):

 Time-consuming: PSP can be time-consuming, particularly when individuals are first learning the methodology

and need to collect and analyze data throughout the development process.

 Complex: PSP can be complex, particularly for individuals who are not familiar with software engineering

concepts or who have limited experience in software development.

 Heavy documentation: PSP requires a significant amount of documentation throughout the development

process, which can be burdensome for some individuals.

 Limited to individual use: PSP is designed for individual use, which means that it may not be suitable for team-

based software development projects.

What is Team Software Process (TSP)?
 Team Software Process (TSP) is a team-based process. TSP focuses on team productivity. Basically, it is a top-

down approach. The TSP is an adaptive process, and process management methodology.

 Key Features of Team Software Process (TSP):

 The key features of the Team Software Process (TSP) are:

 Team-focused: TSP is team-focused, meaning that it emphasizes the importance of collaboration and
communication among team members throughout the software development process.

 Process-driven: TSP is process-driven, meaning that it provides a structured approach to software development
that emphasizes the importance of following a disciplined process.

 Metrics-driven: TSP is metrics-driven, meaning that it emphasizes the collection and analysis of data to measure
progress, identify areas for improvement, and make data-driven decisions.

 Incremental: TSP is incremental, meaning that it breaks down the development process into smaller, more
manageable pieces that can be completed in a step-by-step fashion.

 Quality-focused: TSP is quality-focused, meaning that it emphasizes the importance of producing high-quality
software that meets user requirements and is free of defects.

 Feedback-oriented: TSP is feedback-oriented, meaning that it emphasizes the importance of receiving feedback
from peers, mentors, and other stakeholders to identify areas for improvement.

Advantages of Team Software Process (TSP):
 Following are the key advantage of the Team Software Process (TSP):

 Improved productivity: TSP provides a structured approach to software development that can help teams

improve their productivity by breaking down the development process into smaller, more manageable steps.

 Improved quality: TSP emphasizes the importance of producing high-quality software that meets user

requirements and is free of defects. By collecting and analyzing data throughout the development process,

teams can identify and eliminate sources of errors and improve the quality of their work.

 Team collaboration: TSP promotes team collaboration, which can help teams work more efficiently and

effectively by leveraging the skills and expertise of all team members.

 Improved estimation: TSP emphasizes the importance of accurate estimation, which can help teams plan and

execute projects more effectively.

 Continuous improvement: TSP promotes a culture of continuous improvement, which can help teams learn from

past experiences and apply that knowledge to future projects.

Disadvantages of Team Software Process (TSP):
 Following are the disadvantage of the Team Software Process (TSP):

 Time-consuming: TSP can be time-consuming, particularly when teams are first learning the methodology and

need to collect and analyze data throughout the development process.

 Complex: TSP can be complex, particularly for teams that are not familiar with software engineering concepts

or who have limited experience in software development.

 Heavy documentation: TSP requires a significant amount of documentation throughout the development

process, which can be burdensome for some teams.

 Requires discipline: TSP requires teams to follow a disciplined approach to software development, which can be

challenging for some teams who prefer a more flexible approach.

 Cost: TSP can be costly to implement, particularly if teams need to invest in training or software tools to

support the methodology.

Difference between Personal Software Process

(PSP) and Team Software Process (TSP) :
Parameters PSP TSP

Definition
PSP is a project management process that defines

how to manage a project in a face-to-face

environment.

TSP is a project management process that defines

how to manage a project in a virtual environment.

Formality and

Structure
PSP is more formal and structured than TSP. TSP is less formal and structured than PSP.

Development Model PSP is based on the waterfall model. TSP is based on the agile model.

Project Suitability PSP is more suited for large projects. TSP is more suited for small projects.

Project Phases PSP projects are typically completed in one phase.
TSP projects are typically completed in multiple

phases.

Language Level
PSP is a high-level language and it is easy to learn

and use.

TSP is a low-level language and it is difficult to

learn and use.

Language Structure
PSP is a structured language and it is easy to read

and write.

TSP is an unstructured language and it is difficult to

read and write.

	Slide 1: Software ENGINEERING
	Slide 2: UNIT-I Introduction to Software Engineering and A Generic view of Process
	Slide 3: THE EVOLVING ROLE OF SOFTWARE :
	Slide 4
	Slide 5: Changing Nature of Software :
	Slide 6
	Slide 7
	Slide 8: What is Legacy Software?
	Slide 9: Legacy Software
	Slide 10
	Slide 11: Software myths :
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Layered Technology in Software Engineering :
	Slide 18: Layered technology is divided into four parts:
	Slide 19
	Slide 20: Software Process Framework :
	Slide 21: Software Process Framework :
	Slide 22: What Is a Software Development Framework?
	Slide 23: Advantages of Software Development Framework :
	Slide 24: Dis-advantages of Software Development Framework :
	Slide 25: Capability Maturity Model Integration (CMMI) :
	Slide 26: CMMI Representation – Staged and Continuous :
	Slide 27: CMMI Model – Maturity Levels :
	Slide 28
	Slide 29: CMMI Model – Capability Levels :
	Slide 30
	Slide 31: Process Assessment :
	Slide 32: Software Process Cycle:
	Slide 33: SCAMPI;
	Slide 34: Difference Between PSP and TSP :
	Slide 35: What is Personal Software Process (PSP) :
	Slide 36: Advantages of Personal Software Process (PSP)
	Slide 37: Disadvantages of Personal Software Process (PSP)
	Slide 38: What is Team Software Process (TSP)?
	Slide 39: Advantages of Team Software Process (TSP):
	Slide 40: Disadvantages of Team Software Process (TSP):
	Slide 41: Difference between Personal Software Process (PSP) and Team Software Process (TSP) :

